/* ** Intel/DVI ADPCM coder/decoder. ** ** The algorithm for this coder was taken from the IMA Compatability Project ** proceedings, Vol 2, Number 2; May 1992. ** ** Version 1.2, 18-Dec-92. ** ** Change log: ** - Fixed a stupid bug, where the delta was computed as ** stepsize*code/4 in stead of stepsize*(code+0.5)/4. ** - There was an off-by-one error causing it to pick ** an incorrect delta once in a blue moon. ** - The NODIVMUL define has been removed. Computations are now always done ** using shifts, adds and subtracts. It turned out that, because the standard ** is defined using shift/add/subtract, you needed bits of fixup code ** (because the div/mul simulation using shift/add/sub made some rounding ** errors that real div/mul don't make) and all together the resultant code ** ran slower than just using the shifts all the time. ** - Changed some of the variable names to be more meaningful. */ #include "adpcm.h" #include "stdint.h" /* Intel ADPCM step variation table */ const int8_t indexTable[16] = { -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8, }; const uint16_t stepsizeTable[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 }; int adpcm_coder(short* indata, char* outdata, int len, struct adpcm_state* state) { int val; /* Current input sample value */ unsigned int delta; /* Current adpcm output value */ int diff; /* Difference between val and valprev */ int step; /* Stepsize */ int valpred; /* Predicted output value */ int vpdiff; /* Current change to valpred */ int index; /* Current step change index */ unsigned int outputbuffer = 0;/* place to keep previous 4-bit value */ int count = 0; /* the number of bytes encoded */ valpred = state->valprev; index = (int)state->index; step = stepsizeTable[index]; while (len > 0) { /* Step 1 - compute difference with previous value */ val = *indata++; diff = val - valpred; if (diff < 0) { delta = 8; diff = (-diff); } else { delta = 0; } /* Step 2 - Divide and clamp */ /* Note: ** This code *approximately* computes: ** delta = diff*4/step; ** vpdiff = (delta+0.5)*step/4; ** but in shift step bits are dropped. The net result of this is ** that even if you have fast mul/div hardware you cannot put it to ** good use since the fixup would be too expensive. */ vpdiff = (step >> 3); if (diff >= step) { delta |= 4; diff -= step; vpdiff += step; } step >>= 1; if (diff >= step) { delta |= 2; diff -= step; vpdiff += step; } step >>= 1; if (diff >= step) { delta |= 1; vpdiff += step; } /* Phil Frisbie combined steps 3 and 4 */ /* Step 3 - Update previous value */ /* Step 4 - Clamp previous value to 16 bits */ if ((delta & 8) != 0) { valpred -= vpdiff; if (valpred < -32768) valpred = -32768; } else { valpred += vpdiff; if (valpred > 32767) valpred = 32767; } /* Step 5 - Assemble value, update index and step values */ index += indexTable[delta]; if (index < 0) index = 0; else if (index > 88) index = 88; step = stepsizeTable[index]; /* Step 6 - Output value */ outputbuffer = (delta << 4); /* Step 1 - compute difference with previous value */ val = *indata++; diff = val - valpred; if (diff < 0) { delta = 8; diff = (-diff); } else { delta = 0; } /* Step 2 - Divide and clamp */ /* Note: ** This code *approximately* computes: ** delta = diff*4/step; ** vpdiff = (delta+0.5)*step/4; ** but in shift step bits are dropped. The net result of this is ** that even if you have fast mul/div hardware you cannot put it to ** good use since the fixup would be too expensive. */ vpdiff = (step >> 3); if (diff >= step) { delta |= 4; diff -= step; vpdiff += step; } step >>= 1; if (diff >= step) { delta |= 2; diff -= step; vpdiff += step; } step >>= 1; if (diff >= step) { delta |= 1; vpdiff += step; } /* Phil Frisbie combined steps 3 and 4 */ /* Step 3 - Update previous value */ /* Step 4 - Clamp previous value to 16 bits */ if ((delta & 8) != 0) { valpred -= vpdiff; if (valpred < -32768) valpred = -32768; } else { valpred += vpdiff; if (valpred > 32767) valpred = 32767; } /* Step 5 - Assemble value, update index and step values */ index += indexTable[delta]; if (index < 0) index = 0; else if (index > 88) index = 88; step = stepsizeTable[index]; /* Step 6 - Output value */ *outdata++ = (unsigned char)(delta | outputbuffer); count++; len -= 2; } state->valprev = (short)valpred; state->index = (char)index; return count; } // 解码 int adpcm_decoder(char* indata, short* outdata, int len, struct adpcm_state* state) { unsigned int delta; /* Current adpcm output value */ int step; /* Stepsize */ int valpred; /* Predicted value */ int vpdiff; /* Current change to valpred */ int index; /* Current step change index */ unsigned int inputbuffer = 0;/* place to keep next 4-bit value */ int count = 0; valpred = state->valprev; index = (int)state->index; step = stepsizeTable[index]; /* Loop unrolling by Phil Frisbie */ /* This assumes there are ALWAYS an even number of samples */ while (len-- > 0) { /* Step 1 - get the delta value */ inputbuffer = (unsigned int)*indata++; delta = (inputbuffer >> 4) & 0xf;// &0xf 防止溢出 /* Step 2 - Find new index value (for later) */ index += indexTable[delta]; if (index < 0) index = 0; else if (index > 88) index = 88; /* Phil Frisbie combined steps 3, 4, and 5 */ /* Step 3 - Separate sign and magnitude */ /* Step 4 - Compute difference and new predicted value */ /* Step 5 - clamp output value */ /* ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment ** in adpcm_coder. */ vpdiff = step >> 3; if ((delta & 4) != 0) vpdiff += step; if ((delta & 2) != 0) vpdiff += step >> 1; if ((delta & 1) != 0) vpdiff += step >> 2; if ((delta & 8) != 0) { valpred -= vpdiff; if (valpred < -32768) valpred = -32768; } else { valpred += vpdiff; if (valpred > 32767) valpred = 32767; } /* Step 6 - Update step value */ step = stepsizeTable[index]; /* Step 7 - Output value */ *outdata++ = (short)valpred; /* Step 1 - get the delta value */ delta = inputbuffer & 0xf; /* Step 2 - Find new index value (for later) */ index += indexTable[delta]; if (index < 0) index = 0; else if (index > 88) index = 88; /* Phil Frisbie combined steps 3, 4, and 5 */ /* Step 3 - Separate sign and magnitude */ /* Step 4 - Compute difference and new predicted value */ /* Step 5 - clamp output value */ /* ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment ** in adpcm_coder. */ vpdiff = step >> 3; if ((delta & 4) != 0) vpdiff += step; if ((delta & 2) != 0) vpdiff += step >> 1; if ((delta & 1) != 0) vpdiff += step >> 2; if ((delta & 8) != 0) { valpred -= vpdiff; if (valpred < -32768) valpred = -32768; } else { valpred += vpdiff; if (valpred > 32767) valpred = 32767; } /* Step 6 - Update step value */ step = stepsizeTable[index]; /* Step 7 - Output value */ *outdata++ = (short)valpred; count += 2; } state->valprev = (short)valpred; state->index = (char)index; return count; }